Five Frozen Trees in Sodankyla:

Relating ASCAT slope to water and carbon processes over a Boreal forest using in-situ, model and reanalysis data

Mariette Vreugdenhil and Susan Steele-Dunne

Xu Shan, Thomas Kaminski, Mika Aurela, Emanuel Bueechi, Wouter Dorigo, Wolfgang Knorr, Juha Lemmetyinen, Nemesio Rodriguez-Fernandez, Marko Scholze, Tea Thum and Mathew Williams

Metop ASCAT specifications

Active microwave scatterometer

Frequency: C-band, 5.255 GHz

Polarisation: VV

Spatial Resolution: 25 km/ 50 km Overpass: asc/desc 9:30 AM/PM Multi-incidence: 25-65° Daily global coverage: 82 %

Metop-A (Oct. 2006 – 2021) Metop-B (Sep. 2012 – ongoing) Metop-C (Nov. 2018 – ongoing) Metop-SG (2023, planned until 2040)

ASCAT geometry, backscatter vs incidence angle

EGU 2023 | Mariette Vreugdenhil and Susan Steele-Dunne | Five frozen trees in Sodankyla

What drives slope dynamics throughout the year?

Phenological change during the summer

EGU 2023 | Mariette Vreugdenhil and Susan Steele-Dunne | Five frozen trees in Sodankyla

Sensitivity to extremes

Sensitivity to GPP

DALEC-BETHY - Measurement operator

EGU 2023 | Mariette Vreugdenhil and Susan Steele-Dunne | Five frozen trees in Sodankyla

ASCAT Slope:

Is sensitive to vegetation phenology, outside of winter

Valuable consistentlong data record

Potential with 6.25km full resolution and extending to ERS

Further research on vegetation dynamics at different time scales and anomalies

